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Abstract

The idealized problems of (a) an infinitesimal Hertzian
dipole in and over a perfect dielectric :coating a.perfect
conductor and (b) as Abraham dipole lying on the conductor -
are treated. Unintegrated forms of the Hertz potentials are
obtained for both electric and magnetic dipoles.

Integrated far-zone forms of the potentials and fields
are obtained for electric dipoles by means of asymptotic
integrations. Par-zone radiation patterns are given in
order to indicate the distortions of the fields and the

magnitudes of the residue waves caused by the dielectric
coatings.

It is proved that the power radiated by the dipole may
be divided into two independent quantities-the power fed to
radiation type and that fed to surface or guided type fields.
For certain cases numerical results are given for the total
powei radiated and the relative powers fed to the two types
of fields.

- Pormulas are derived and illustrated with numerical
examples of the radiation resistances of the dipoles and
the attemiation constants of the surface modes due to finite
conductivity of the ground plane.

Introduction

A study of the coated conductor problem was undertaken in
an effort to explain certain characteristics of an antenna
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field pattern obtained .from measurements taken over an
aluminum ground screen. The effect of the finite conductivity
of the aluminum did not yleld an adequate explanation of the
observed characteristics near the ground screen and subsequent
measurements showed that the phenomenon could be emphasized by
the addition of a dielectric layer to the ground plane. Since
a dielectric coated metallic surface can support a guided wave
for any thickness of coating, it was deduced that the thin
coating of aluminum oxide present on the ground screen was
responsible for the behavior.

_ The idealized problem involves a uniform layer of perfect
dielectric covering an infinite, perfectly-conducting plane; a
Hertzian dipole 1s in one of three positions: -Case A, above
the dielectric; Case B, in the dielectric; or Case C, an Abraham
dipole on the plane, Fig. I. Unintegrated expressions are
derived for the Hertz potentials in and above the dielectric
due to both vertical electric and magnetic dipoles. For the
spécial cases of vertical electric dipoles in or near fairly
thin dielectric coatings the integrated forms of the far-zone
fields are obtained. Marcuvitzl has derived a similar ex-
pression for. the Hertz potential above the dielectric due to

a dipole above but near a thin dielectric coating by a some~
what different method. The mathematical details of this
problem are similar to those of the vertical dipole over a
conducting ear‘l:h.,z"3

The resulting fields, comprising a radiated-=type wave
(or compensating wave) and one or more guided-type waves,
have been combined at typical distance for a polystyrene coating
to yield field patterns. Several examples of these are given
illustrating the distortion of the patterns due to dielectric
layers. To further illustrate this distortion, expressions
are derived for the total power output of the dipole9 the ratio
of the powers in the guided and :aciated waves, and the radiation
resistances of the dipoles. "here possible in the illustrative
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curves of these expressions, comparison curves .for metal
surfaces without dielectric coatings are given. In addition,
the expression for the attenuation constants of the guilded
waves due to finite but large conductivities of the conducting
plane is derived. No attempt is made at this time to .compute
the attenuation due to conductivity of the dielectric. A good
approximation to this attenuation is given by Attwood°4

II

Formulation

Let an infinitesimal electric Hertzian dipole, a magnetic
dipole, or an Abraham dipole be oriented along and parallel to -
the z-axis of the cylindrical coordinate system r, 9, z, Fig. I.
This system is independent of 8. Region I, @ £ z <00, with
constants €, u, o = o, is the space above the dielectric; region
2, with constants nze, B, 0= 0, 0=z <d, is the dielectric.
region; and region 3, z =0 is a perfect conductor with o= @
The dielectric constant of medium 2 relative to that of medium

11is n2, where n is the index of refraction.

As is well known the electromagnetic field excited by electrie
or magnetic sources oriented in the z - direction of a cylindrical
coordinate system may be derived from the s ~ components of the
elecfric or magnetic Hertz vectors. Hence, the problem will be
formulated in terms of these components.

The problem 1s subdivided into five divisions according to
the positions of the dipcles and as to whether the electric or
magnetic case is treated. The harmonic time dependence.e'i‘“’t
assumed throughout* and is cancelled in all expressions.

is

*To convert to dependence eJmt substitute j for ~i.
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Vertical Electric Dipoles

Case A A Hertzian dipole above the dielectric at
d< z'*< o, T =0
5 > Py(z*)8(z-2")8(r)
B \VARLY + B m === e Region 1
(1) (a)
26 \va 2172 + n252n2'= o} Region 2
(4) (A)
Case B A Hertzian dipole in the dielectric at
0<z'<d, r* = 0.
2 2. -
3. V ™ + B8 m = 0 Region 1
(B) (B)
. o DPo(z' )8(z-2')8(T)
4, Vv 2172 + n262rr2 = .2 -5
(B) (B) 2nnTer Region 2
Case C An Abraham dipole on the ground plane at
zt. = 0, Dt =0,
5 2 2
o Vﬂl+5ﬂ1=0 Regiox}l
(c) (¢)
p,(0)8(z)8(r)
6. V 2171 + n252ﬂ2 o L 5 Region 2

The appropriate boundary conditions are:

om - oM
7. a) T (r,d,z') = 35z (r,d,z')
2

b) emy(r,d,z',) = n'emy(r,d,z')
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c) —
d) The Sommerfeld condition of radiation,596
where:

ﬂl(r9z;z') is the z-component of the electric Hertz
vector in region 1.

ﬁz(r,z,z') is the z-component of the electric Hertz
vector in region 2.

These are defined by:

sp 2 (m 2 : 1) (w
| Byl =22 1|+ 2@ + g2 L
8 {—-ﬂ zg;z P

oradz ... :
E2 L nj (f,.
B 2 .
‘ 10 _ A, BS . 1
e B =8l 5%: 2
Pl v

The upper quantities in the brackets are valid in region 1
and the lower quantities in region 2.

B = w Yep

n? = relative dielectric constant of region 2
with respect to region 1.

py(z*) d<z' <oo
is a vertical Hertzian dipole at z?® -

pz(z’) 0< z! <d

92(0)/é is an Abraham dipole at z' = .0

2 The Laplacion operator
v2= % .5% (r Bgr') + -97 = in the cylindrical co-
- g 9z ordinate system with no

© dependance.

-yl
§£§-%E%?££l 1s the Dirac delta-function for a source
at z=z', r =0,
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Vertical Magnetic Dipoles

Cases A A magnetic dipole above the dielectric at
d<z'<w, r' =0
uml(z')S(z-z')S(r)

1. v, + %, = o Region 1
(A) (4)
12, V2"m2 & n232ﬂm2 =0 Region 2
(1) (A)
Case B A magnetic dipole in the dielectric at
0< 2z'Sd, r* =0
2 2 ”
13. ALY + B Ty = 0 Region 1
(B) (B)
2 2.2 umz(z')ﬁ(z-z')5(r)
14. v/ o + n“B o = = St Region 2
(B) (B)

One should note that the problem of a magnetiec dipole placed
at z' = 0 need not be formulated since according to the theory
of 1mages it yields fields which are identically zero.

The appropriate boundary conditions are

15. a) m(r.d,z') = n(r,d,z")
h =2
b) -g-z T (Tsd,2') = 35 mpo(r,4,2)

-

subject to Ry SH, =K

e) m,(r,o,z') =0

d) The radiation condition.596
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Where:
]
Ny (T,2,2

'
ﬂha(r,z,z

These are defined by:

7=

) » is the z-component of the magnetic
Hertz vector in region 1

) J region 2

-l - A a
' E S-ful == | W
16, “lm’ or | ml
Eom "mo
3 2 2
= Y _ A 3 2 A d
17 |Bym| = 2 5+ B {12 ™1 |* T 359z |m1
- F oz n
Bmo | - mo 2
Where the sﬁbscript m indicates quantities in the magnetic
cases and
ml(Z' ) dsz'€ o
i is a vertical magnetic dipole at 2'
m,(2') ocz's d

Since the problem is formulated in cylindrical coordinates
with 6 - symmetry it 1is- convenient to apply the well-known
Fourier - Bessel or Hankel Transform pairZ&m'O symmetry to

equations 1-6 and 11-14.

®
- 18, m(A,z,2') = Jr rr(r,z,2')J (Ar)dr
o

19. m(r,z,z2') = f Anv(n,z, 2! )Jo(hr)dh
‘ o

After applying squation 18 to the equations 1-6 and 11-14,
performing an integration by parts, and applying the radiation
condition* to the left sides of these equations the following

gration by parts? This
the radiation condition

e - i i < - o e et e 22 ot

g.e

iﬂ rJo(Ar) -nTAJ,(Ar)]

appears after the inte-

ppears 138ntically at r=o and at r
requires its disappearance.
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results are obtained for the left sides of these equationss

for equations 1, 3, 5, 11, 13

2
(—8-2' 42) =
3z

lorml

for equations 2, 4, 6, 12, and 14

2
D
(2 T arm

vrhere{2 and m2 are defined:
20. 12 222 . g2
21, n® = A2 - n2g?

After noting that the application of equation 18 to the
right sides of equations 1, 4, 6, 11 and i4 yields the value
1/, the following transformed equations are obtaineds:

8 .
h - p1(2')8(z~-2"')
226 . ﬂ'l = Y ——— oTE
(4)
| ﬁl = 0
N (B)
'(‘;—2-32){ ) = : 0
= (C) )
o i dcn o
"m1 = - on
(A)
1 = 0
| (B)

PRV HEPIN LT RN PR B g



TR172 9=

23. ”ﬁé = 0 g
(N
- p,(2")8{z~2")
TT2 = - >
3°< 2 :
-_—2 - m) _ _ pz(o)s(z)
(az < ﬂ'2 = - __-2—_4'ﬁn . }'
(C)
= _ ' umz(z')S(z=z‘;‘
| "m2 = = o "

These are the transformed forms .of equations 1, 3, 5, 11, 13
and 2, 4, 6, 12, and 14 respectively. These satisfy boundary
conditions 7 a-d and 15 a=-d as can be seen from equations 18-and
19 assuming that the order of integration and differentlation,
with respect to z, may be interchamged.

According to the physical considerations of these problems
it 1s convenient to substitute the following forms in equations
22 and 23. If these satisfy the equations and boundary conditions
they are the unique solutions of the problems except for an arbi-
trary constant in time.8 The subscripts indicate the equation
to vhich each trial solution belongs.

. ",1
24, eﬁl(l,z,z")
w
(s! ; '
Py{%%) 1 ~Clz-z1l ~f(z+z1-2d)+2md
T:m e + B(l,z')e‘ €
T (N,z,2")
-(A)- - 1 8 + .l
oy (2) + olr gt (242! -20)

Where the first term is the incident wave or the wave radiated
by an isolated source, the second term i1s a wave reflected from
the metal surface, and the third term represents a wave reflected

).
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from the dielectric surface.

-10=

o ) N
25, efy(N,2,2')
(A)
py(z*) i
Pt -[e|d-z'| + m(d-z)]
[ =D(rzt)e
Emz(}s’z’zj ) .
Q) -tfld-z'l +m(d+z) ]
() | *EONae

Where the first term is a wave transmitted into the dielectric
and the second term is a wave reflected from the metal surface.

S
eny(hy2,21)
(B)

po(z*)

2

26. n

202¢7,(, 2,0)
(c)

= L

p,(0)

ﬁmz(x, z, z;' )
B) __

umz(zil

-

4mm

-m|z=z}|

-m(2d-z-z‘)

+ F(Az )e

-m(z+z')

+G (A,z')e

= 0 for case C.

Where the first term is the incident wave, the second
term is a wave reflected from the boundary z = d, and the
third term is a wave reflected from the metal boundary.
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27. ngeﬁi(p,z,z?) 7
(B)
py(2')

2n2eﬁi(h,z,o)

(c) - -4{z-d)
p2(6) = H(K’Z'_)e . -

Tn1(Ny2,2")

(B)

hmp(2 1) /

where this term represents a wave radiated from the
dielectric surface.

It mav be observed that the left sides of equations (24-27)
are the Green's functions for equations (22-23). The proper
choice of the coefficients of the first terms on the right
sides of equations (24) and (26)- gaurantees that these equations
satisfy the conditions for the Creens functions at z = z!'.

Substituting equations equations (24-27) in their proper
boundary conditions 7a-d or 1l5a-d, it may be verified that the
trial solutions 24-27 indeed do satisfy the boundary conditions.
Evaluating the constants B(A,z') through H(A,z') yields the
transformed Hertz potentials. Applying the Fourier-Bessel
integiral, 19, rearranging the resulting integrals, and using
equation (28),? yield the Hertz potentials, 29-38, which are
the solutions to equations (1-6) and (11-14).

1/ 2 ,2 =

Py =1zl ¥ A=k eik ¥ r2.+z2_

28. i f———w) e AN =
(o] sz-k 47w rT4z

¢ e TohAY o K IRINT oy kb AN RS W TV IR DA SN

MA

BRTL T DYVRE S T WRE



TR172

Vertical Electric Dipoles

Case‘A
29,

30.

Case B

31-

32.

Case C
33.

T,z ,z; ) = pz(z; )

. N R ! - ]
m(r,z,5!) = p;(3Y) Liﬁi, o ﬁ.f_’:l_'
(A) 4ng R' R'?
+ 2 cosh md e'4(2+z"2d‘) AJo(Ar)dn
o [39 9n9d)
Region 1
¢ L
. . e ,

nz(r,z,z') = pl(z') f cosh mz e (z d)wo(hr)dh
(4) onen®  “°  u(g,A,n,a)

B Region 2

> - -' —— —1
m(r,z,2%) = n,(r,z%,2) py(z*) =
————

(B) (A) p]_(z‘)

s o l(z-a)
Pg(z") f cosh mzte 220\ Jo(Ar)an
o

2nemne H(g A n.4d)
BaoTly Region 1

o v
|—e1nBR , olnBR

(B) 2. L B R’

: ~md
-2 Z - m/n2)coshmz' coshmze AJo(Ar)dn
m M(B A ,n,d)

Region 2

m (r,z,0) = p,(0) f e"p(z'd)x;ro(xr)dh
o

(¢) 4men M(B,A,n,d)

Region 1

g HhS WA B -

LT T RN
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Region 1

Region 2

Region 1
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34. rr2(r,'z,'0) =.p2(0) einBR-f (f-m/na’)coshmze'mdmo()»r)dh
(). am?% R VO m M(8,A,n,d)
Vertical Magnetic pipoleg
‘ Case A
35. m_.(r,z,2') = (z') o PR 1887
(IAn]). 129 p.m l:]gl R"
~{(z+zt-24d)
sinh md e AT _(Ar)dn
+2 Z TﬁT’ ,n’d) (o]
36, m,(r,z,2') = uml(z') ‘ZT sinhmz e"e(z -d)hJ(hr)dK
(A) N(B A nd)
 Case B
37, mpq(r,z,2') = mo(r,z'z)m,(2")
(B) (A) m (z*)
= u.ma(z') Z sinhmz! e -l(z-d)uo(kr)dk
o K(B,A,n,d)
‘ EON : 18R'  _1fRV
38, nhz(r,z,z ) = uma(z ) | ePt - e
—aw | = RY
= 2f (L-m)sinhmz*si e ™\ (Ar)an
o mN(B,A,n,d)

Where

39.
40,

¥(B,A,n,d)
N(B,A,n,d)

= fcosh ma + B5 sinh ma
n
=fsinh md + m _osh md.

Region 2
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R is the spherical coordinate distance of Figs. 2a and 2¢.

= 2 & g2

gt =V 12 + (z-21)2 Fig. 2a

b (g oo delbighfe s ag o

Rt =Y 12 + (z+z2'-2d)2 - Fig 2a
RV ='[/rr-2 + (z+21)?

It is to be observed in equations 29-38 that the forms of

the integrands of the unintegrated ' terms indicate that these
are standing wave distributions or multiple reflections of the
waves from the dielectric and metal surface in region 2,'the
dielectric region. The integrated terms indicate that the
dipoles are imaged in the dielectric or metal surface.

The E and B fields may be derived through the application
of equations 8 and 9 or 16 and 17,

IIT
Far-Zone Formulations of the Hertz Potentials

The Hertz potentials 7, and m, for vertical electric
dipoles are asymptotically integrated to obtain far=-zone
expressioﬂé with the restriction of thin dielectric coatings.
The integrations of equations 2.29-2.31 and equation 2.33,
Appendix A, are similar to those performed by Ta110 ana
others.ll’iz Equations 2.32 and 2.34 are integrated using
ﬁhe method of Van Der Waerden,13 Appendix B.

The integrals in equations 2.29-2.34 are transformed
to a symmetric form for r> o:

(1)' fF(h)Jo(xr)Mx = % | F(x)aol(xr)mx

o] o

- s
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FIG. 2c COORDINATE FOR CASE B-1 AND G-I

Mesagssses.

aapverae



TR172 ~15-
through the use of: %

I () = 2t M) + H 2(Ar)]
and 5 "
B 2(Ar) = - H '(-Ar)

where:

F(\) is an even function of A, and Hol(hr) is chosen in
order to yield outward travelling waves for real positive Ao

The integrands in equations 2.29 = 2.34 have first-order .
poles where M(8,A,n,d) = 0, equation 2.39, or for solutions of:

(2) + n® V252 = + V n28%A2 tan(aV n%s2-A2

Examining equation (2) in the light of equations 2.29 - 2.31,
it is found that ? and m must be either positive real or negative

imaginary numbers in order not to violate the radiation condition.s’

It is also observed that solutions exist only for the same sign
on both sides of equation 2 and that the roots must satisfy:

(3) B=My=np
Figure 4 contains curves of A;/f versus Bd; the electrical
dielectric thickness, for n® = 2.54, polystyrene, and for
n® = 2.25, polystyrene, in the range .10n<Bd < 1.6n. Equation
2 has at least one solution for all Bd, fd > 0. A new solution
or root Nk. appears when:

kny

k=012, 6 « o N &
n"l 9979

(4) fd =
Henceforth k will designate the number of solutions of
equation 2 for a given Bd.

The integrands in eqguations 2,29 - 2.31 and 2.33 have
branch points of £ =0 cr A =2 B, (1) and (2) in Pig. 3,
and at A = 0, (5) in Fig. 3, and poles at A = Xl,'. o © ,'hk.
Upon examination of the integrals for slightly complex § and n,

Al S TRAT 53 Cobia Tivra 9o
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it is_seen that the integrals .are to be taken over path Wl in
the complex A plane of Fig. 3.

The integrands in eguations 2,32 and 2.34 have additional
branch points at m = 0, A = * n, (3) and (4) in Fig. 3, and in
addition the same poles and branch points as the former integrands.
These integrals are to be taken over W2°

The evaluation of the k residues and the combination of these
with the assymptotic integrations, performed in Appendices A and B,
yield the far-zone Hertz potentials, equations 5‘- 10; subject to:

i s
I BR>>{Bd}1!hereR= 1'2'+z2

and ‘L R' T
el Mli<o(n’2)<<o(n"’~l)

oR|ns - Ne| << o) <<o(rl)
Qr in other words the poles are not too near the branch points.

The terms in the summations in equations 5 - 10 which are
due to the .evaluation of the residues, are waves which propagate
radially and. attenuate exponentially 1n the z direction. These
waves Mhug" the surface and are hence called guided or surface
waves. They result as eigenfunctions of the configuration, Fig. X,
(ekcluding r=0). 4, 16 The remaining terms will be designated
as the radiating or compensating waves.

The far-zone Hertz potentials are:

Case A Hertz dipole above the dielectric at d<z'soq r' =0

! n n
' p.(z*) igR iBR P(8,) iBR
Se ﬂlF(r,z,z') = 18 - LR - R - - e
(4) 4nR  4nR R
2_qn2
LS _J‘°1)Q‘JL 41,d) 9[1 ge-(eizi=20)Y hgop™d

e o Tt 7% 5 = S R S S s m e -
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- /L/
| ]
1.5 ] : v2.25
>‘J/B (/ - =
=i gl -
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1.2 // / 7
/
LI é/ Bd= 'W_l = THE CUT OFF FOR 7
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6.

" 47(85)Q(A;,8,n,d)cos(z ) .
T= ‘ﬁZﬂkJr c‘os(da n!B!- Ji) )

pl('g') P(92)cos(Bz Vnz-coszez) 1pR'"!

"2F(r’z’z') - 2 XK 2 2 i
(A) e R cos(Bd |/n“-cos“e,)

A

[4A;r-(z'-d) ,‘Jz_Bz.] ’

0=< z<4d
Case B Hertz dipole in the dielectric at 0 < z=<d, r'=0
anlV
) _ ‘P.(z*) | P(8,) cos (Bz* n2-c0529 ) 1R
. F 1y = 2 3 3
Zp "1 (I‘,Z,Z ) = 2 e
i Iv 2 2
(B) et R cos (Bd )/ n“~cos 93)
_ o, 2_a2
i: 8,(8,)Q(A;,B,n,d)cos(zt Y n22n %)  [WryT=(2-2) ¥ A;7=67
=1 2177\er cos(d |/ n“p=-A;%) o
| d<z <
| P,(z')
8. ﬂzp(r,z,z') =_2”T_ .
. (B)A | en .-
Q(A,,B,n,d)cos(z' |/ pzsz-thjcos(z n282-hJ2) e
s = e
J= V;2ﬂ7\.Jr cosz(d\/ nzﬁz;th)
0 z<d
Case C Abraham dipole on the metal surface at z' = 0, r* = 0.
' Iv
iBR
- P,(0) IE‘&) e

+ Zk; il(o%)q(hp Byn,d)

nlr(r,z,O) = T
(€) neg l'R cos(pd Vnz-cos!93)

(1r;r-(z-d) ngsz)

: e
Vzﬂth cos(d: nZBZ-NJZ)

d<z <00

oy taliidal

VS U e = T PYAL WY S T TR
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10. n,F(r,z,0) =

P ,(0) k. Q(n;,8,n,d)cos(z ¥ neazmxzfl E

' 4
1 2n'e - . 2
i (c 1 2nh, T cos (4 nzﬁz_KJz)
i N 0<z <d
Where:
o i sin®
P(G) = Kl -m———.—w
2n(1 sin® + n n“-cos“@ tan(Bfd y n“-cos<e)]
M ZE (2
Q(Ag,B,yn,d) = -

and Ay (6) is defined by:

- -1
AJ(G) 0 e > cos B/KJ
As(0) = % e = cos'lﬂ/kJ
- -1
: AJ(G) =1 ©<cos B/A;
and
. 8, = sin~! +z‘:2 = cos™! */Re 1
' R
: ]
- R = 1/;2+(z+z'-2d)2
8, = sinf1‘§?99‘= cos"1 /gt

R

thl e 1/1'2"’(2' _ d)2

& -1 (z-d) _ N
8, = sin = cos =

RV = Vr?+(z-4)2

BP(P-1) + @ W PRPInP(n2-p2)+(82 A, %n72) ]

Pig. 2a

FPig. 2b

Pig. 2¢

ot ] 1 s s TN
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AR .
If it is assumed that Bz' << BR the first term in 6

-9
vanishes and A (92) = 1.

The magnitudes of the fields. of the guided modes attenuate
with height z in two ways - first, the exponential or guiding
factor exp(-z k LJZ-BE); second, the coefficient AJ(O)o The -
second factor is a function of Br while the first factor does not
depend upon the radius. It may be observed thatas fr increases the
exponential .attenuation takes precedence over the coefficient's
attenuation. Fig. 5 contains curves of the minimum radii Br,
for each mode, at which the field attenuates to 1 percent of
its maximum value due to exponential attenuation, at a height
Bz less than that at which the coefficient Am(e) equals its
critical value. These fr are plotted versus fd, in the range
.10m < Bd < 1.6nm and for n° = 2,54 and 2.25. For Br greater
than these values AJ(O) = 1 to within 1 percent acéuracy°

The presence of the factor AJ(O) indicates that as Br
increases the guided wave acquires more power until at Br = o
the total power alloted to it has been attained. Making the
assumption that A;() 1is identically ome, for Br greater than
the values of Fig. 5, is the same as assuming that the guided
wave has acquired its total power at this pr. It is valid to
within .01 percent accuracy with respect to the Poynting wector. |

~ Since in this report the far fields are being 1nvest1gated;
it will be assumed henceforth that Br(=pR sind®) is greater
than the values of Fig., 5 for each Bd being investigated. For
this reason the notation Ay (@) will be dropped under the
assumption that Ay (¢) =1

It is to be observed that, in order for the fields to
be identical for sources at z' = d+ and z' = a-, pl(d+)-p (d-)/n

s I Y e LA
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IV
The Far-Zone E- and B- Fields

The representatién of the far-zone ﬁ- and B- fields are
obtained by applying equations 2.8 and 2.9 to equations 3.5 -
3,10, Terms of order higher than r~1 are neglected. The
assumption is made that Bz'% < PR so that the radiation term
in equation 3.6 may be neglected.

- It is convenient to represent the radiating terms in

spherical coordinates.

The following suhstitution315 are made

in the radiating waves assuming BR>>1 in Fig. 2.
In the phase factorss _

BR* = BB.r Bz' cos@
srIV

In the amplitude factors:

r/R%" = cosOl

z + z*' -2d4 _

R

sin03

cos@
3

BR" = BR - g(2d-z*')cos®
= BR - Bdcos® -

= ging = r/B'é r/R?*

s1n0) £ cose = z/R £ ¢ - zlYR

BR' = BR" = gR

r/RIv Z r/R

cos o

r/R.Iv 2 r/R
BR = pRTY

siné

The substitution of these into equations 3.5 - 3.10 after

2.8 and 2.9 have been applied leads to the following far-zone
fields for vertical dipoles.

restrictions as 3,5 - 3.10 in addition to Bz'<<BR.
Case A Hertz dipole above the dielectric at

dS Z' .<_CD9 1" = oa

These are subject to the same

.
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Region 1.
F _Fr k_ _FG
(a) (a) ;: (a)
, 2 .
A BTy, z: VAR W
=-=-V«[Rx31]+-5-2 1V A= Bj; x 2 -T xA; B.yl
(A) ; J=1 (4) (K1)
) k ,
| | = =
2e B,(r,z,2') = B; + By ;
() (1) J=1 (4)
A py(2')83sine [cosBeosg + S singl  1B(R-dcosel
= @ T 2nRwe Tcos® - 1S ] &
8 p (z')B2 k (iA. r=(2z+z2'=24) VA 2-52]
1 - J J
- AQ(As,B,n,d) e
weY 2nr LG i =
A N .
Where: R, ©, and 3 are spherical cocrdinates,
£, @, and 2 are cylindrical coordinates.

‘-
H

1
(en)” 2 = the characteristic vslocity of medium I.
g = 6(B,\,2',86) = B(d-z')cos0.

8 = 8(n,0,d,8) = n2V n’-sin% tan(paV n-sin’e).
Region 2.
.F k, %6
30 ' Ez(r’Z’Z') = E?—J
(1) J—; (1)

J 2J
(a) (A)

k
PG ?G
= —2‘;3 E [1‘1/ n?p2-a;2 tan(z)V np%a;2)B,; x £ - T x A8 J
3

et
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. P k -
4. B, (r,z,2') = E B,;(r,2,2")
(4) J=

k (4N 2]. .

Jr-(z'-d) A 2-5
JQ( Byn,d)e

epl(z )B Al

we Y 2 J_'

[cos(z nzﬁz-yifl

[cos(d n2;a2-xJ2]

Case B. Hertz dipole in the dielectric at 0 < z'<d, r' = 0.

Region 1.
) . T _Fr k7
5e Ey(r,z,2') = By (r,2,2') + E,;(r,z,2')
() (B) J= (B)
=-vfixB )+ & E 1V a,°-p° anz-rxxJBH]
® B T (B) ' (B)
6. B,(r,z,z') =B, (r,z,2z') + Z By4(r,2,2') -
| | (B) (E) =I (B) |
=. 2P (z')33 0s0][cos n2-sin°g) elf(R-dcos0),
2ﬂmn eR (cose~1s] [cos(Bd V 2_sin%c ) ]
(Z') 2 k [ix r-(z-d) ] L
| el S e
wn"eV 297 F=
l | cos(z* |/ n“B -h )
Reglon 2 cos(dV n?BE-xJz)

b - 76
7 Ey(r,z,2') = Eyy(r,z,2")
(B) I (B)

o —— -— o

o e A o SR 8 ASAI T



TR172 w23

== E 1V PRg7 tan(a VWD) By 8 - B x Ay
J=

n~p (B) (B)
k

F FG
8. By(r,z,2') = E Byy(r,z,2')
(B) J=1 (B)

p,(z")p2 - INT e
=-§ -—3————- ; MQ(Ag,B,n,d)e 9
' wn eV 2 J= .

cos(z' nasz-h;z)cos(z ;
cos?(d Vn232_ha2) e

Case C. Abraham dipole on the mefal at z!'-= 0' r' =0,

n2B2=h 2)

The respective quantities are given by the following
- relations: :

F
9. E (r,2,0) = %lim 1(:51- z,z')

z'»0

% 1im ﬁr(r - =

Fr(r,z,o)
(c) z'—>o0 (B)

-~ with subseripts 1 or 2.

It is to be noted that the radiating or compensating terms
are waves of spherical type which attenuate as R 1; the guided
terms are waves of cylindrical type which attenuate as r ‘} As
r or R increases, the ratio of the magnitude of the guidea wave

to that of the radiated wave increases.

The guided modes are elliptically polarized in region 1 with
semi-major axis in the z direction and semi-minor axis along r.
The eccentricity for each mode, which 1is independent of position,
is:

11. | e B/"J
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The guided modes are sometimes referred to as "slow waves"
because their phase velocities, V; = w/A;, are less than the
characteristic velocities of the region 1.

Goubau16 17 and Attwood* have treated, at 1ehgth,fthé‘
field and flux distributions for waves of this type.

v -
Field Patterns

The field patterns are curves of the relative magnitﬁdes
(with respect to their maxima) of the €~components of the E-
fields in region 1, as funct;ons‘of 8, in the range of 8 between

0 and n/2, for BR>> 1. The dielectric is assumed to be'thin T

so that @ = n/2 along the surface between region 1 and 2 Fig. 2
To obtain the formulas from which these curves are computed it
is necessary to convert the guided comporents of the fields9
equations 4.1 -~ 4.10 to spherical coordinates and to recombine
the fields at some large fixed BR.

It is importaat to notice that the field patterns defined
above are those measured by a receiving antenna polarized and
traveling in the @-direction at the chosen PR. Since the guided
waves have R components, the patterns are not the relative
magnitudes of the total field along the great circle of radius
BR. It is also important to observe the manner in which these
patterns vary with BR. Since the radiated wave disappears at
8 = n/2, while for most finite dielectric thicknesses, Bd, the
surface wave attenuates rapidly with decreasing @, the region
of interference between the two is very small. Por these
reasons, the principal effect of varying BR, is to vary the
relative magnitudes of the sections of the field patterns, at
@ near n/2 and at © less than n/2, by a factor B}.

Pigures 6 - 14 contain field patterns for cases A, B,
and €, n® = 2,54, BR = 239 and various Bd and Bz', on semi-

logarithmic scales, with comparison patterns for dipoles above
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or on a perfect, uncoated conductor for the same dipole heights;
Bz', as those with the coating present.

The dielectric constant of polystyrene was chosen as belng
typical. BR = 239 was not only chosen as being typical but was
chosen for proposed future experimental use. The thickness
Bd = nﬂ/2 may seem peculiar, but in Figo 4 this value is seen
to be smaller than, but very close to, n/ V n 2 " the value at
which multimode prOpagation commences. Since the value Bd = nm/2
possesses this quality; besides being convenient for numerical
computation, it was chosen. It is clear that the dielectric
thicknesses used provide-good coverage of the region of single-
mode propagation. -

The quantities plotted in Figs. 6 - 14 are:

. F
1. ue) = iz«:ell
_ e : Eelle =n/2 = el

For Bd =0 and Bd # O.

The main points of interest in Pigs. 6 - 14 are the large
maxima or spikes at @ = n/2 and the compressions of the rest of
the fields with the accompanying minima between these two. These
curves are drawn on a logarithmic scale and must be examined
closely to appreciate the actual large magnitudes of the maxima
at © = n/2 (the surface wawes) compared to the rest of the pat-
terns (the radiated waves). The ratios of the powers in the two
components of the fields, Figs. 20 and 21, give a better concep-
tion of the large size of these maxima_, especially if consider-
ation 1s given to the fact that the surface wave is compressed
into a small segment of space, while the radizted wave is dis-
persed over the complete half-space.

For case A the field patterns for € < n/2 are similar to
those without the dielectric coating for dipole heights equal to
the dipole heights in case A minus the dielectric thickness.
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This means that, for case A, the radiated waves are strongly
reflected by the dielectric¢c surface.

In cases B and C the effect of the dielectric is to compress
the radiated wave into a smaller sector.

Figure 15 is a plot Qf\Egﬁ///‘JEgg versus O for the fd's of

Figs. 6 = 14 over the range of significant magnitudes of E§G. For
the cases considered J = 1.

tudes of the R-components of the radiation patterns.

dielectrics these ratios are almost constant, indicating that; since
E EFGI i3 constant and equal to the @ to R component ratios of
z 2 . FG FG PG G
Fig. 195 at 0 = n/2, EZJ and ERJ are essentially E and ErJ respec=
tively over the range of significant values of\Eg T,

VI

Formulatiog of the Power Equation

The purposg¢ of this section is to formulate the equations
which govern the time-average flow of power across a surface
surrounding the source p(z'). Since the far-zone approximations
do not satisfy Maxwell!'s eduations and since the proofs that the
powers in the guided-and radiated-type waves are independent re-

quire the fields to satisfy Maxwell's equations; it 1s necessary
to formulate the exact fields.

Considerf and 'ﬁ,' the exact fields existing in the configu-

ration of Fig. 1, due to a source p(z') in any of three positions
A, B, or C of Pig. 1,

For Br> 0 the transformation of equations 2.29 - 2.34 to the

Hankel function form 3.1, is valid. The exact integrations, if

they could be performed, would be taken over paths Wl and W2 of
Fig. 3, These integrations yield contributions from the poles and
branch cuts. The application of equations 2.8 and 2.9 to the re-
sults of the integrations yields the exact P-and B-fields. It is
sufficient for the purposes of this section to represent the branch-~

cut contributions. _Er,'ﬁr,'symbolically, while the contributions
of the poles,_EG;"EGq'may be explicitly evaluated.

These yield an indication of the magni-
For the thicker
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For Br> O the exact fields may be represented byls

1. a) E=E +E b) B =5 + 5
2. |
a) EC = 'E 'ﬁg
7=1

5
: in/2 , ~ -z YAS=BC
rAH e (11 xg-sz H}_(th) + szHg(}Jr)]e J
‘EEZ d

Region 1
J=1 :
A2J ei"/z[f' I/nzﬂz-sz sin(z‘l./n2§32-7»...j,2 HI]‘(?\.Jr)
\ B
+ %chos(z Vnzﬁz-sz) Hl‘ikJr)] Region 2
b) B4 =) = ¢
J=
: ~z 1/3..],2-82
AlJ e Region 1
= Oﬂl(th) s
J=1

2
A,s n®cos(z 232-%.3,2) Region 2

_ Where A, is a function of A;, B, n, d, w, z' and p(z').

A L)
For BR>>1
3. a) Lim {g}é{%{}

BR>>1 B :

B e T g

sl
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Where the flelds on the right sides are given in section 4.
i? and'ﬁF are approximate solutions to Maxwells equations

for large Br while-ﬁ,’ _B:,' §r9 B, -E.:g, Bg are exact solutions

to Maxwell's equations for BR> O,

For Br>>1 the guided or residue waves exist uncancelled,
but as Br—~0 the functional forms of the gulded waves become
infinite.  Since this 1s physically impossible except at discrete
points at r = o, z = z', the so-called radiating or compensating
fields, due to the branch cut contributions, must cancel the
singular parts of the guided waves as Br—»0. An indication:of“
the cancellation is given by the appearance of the factor A;(O)
in the asymptotic results. Despite this cancellation the division

in equation 1 1s valid because of the linearity of Maxwell's
equations.

Since p(z') 1s arbitrary, let it be chosen to be a real

quantity. It may be verified that for p(z') real AiJ and Aoy
are real. : .

The power flowlng across any surface S surrounding
the source is given by: _

4, P %—ﬁ[,[’ﬁo & x " )as
B —pp -y
+ i f . (B x E:TG* + EJG x BF)as
B

+ S E _j'ﬁ . (E:TG x—B’mG*)dS]
J= m= S ' ’

where f is the outward normal to the volume enclosed by S,
and superscript® indicates the complex conjugate.

It will be proved that

Re fA =r _ —=G%* =G . hT*, =
50 Tu [ sno (E xB‘T +EJXB )dS] 0

et e e A 9 D S . At g % e —— -

. .
it o e 5 v Y LR 2 ey
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and ] ) _
— .-
6. g%,/ﬁ.(EJGmeG*)ds=o J#m
o 8 '
(The author is indebted to Dr. George Goubau for
suggesting these proofs and recommending references
to similar proofsolev 19).
Some necessary formulas derived.by well-known methods20 are
_7° v :

%—3 f A (€ xBhas = 130 "'B* .TE;_ av.
S -
= ~/}B o EA av
where S is a closed surface surrounding a volume V.

-—

EA9 BA and EB9 BB are two independent solutions
~to Maxwell's equation in V,

. P and J are the impressed polarization and
current densities.

€ and jp are assumed to be real in V.
n is the outward normal to V.
and the reciprocity condition.21

8.{’:‘1“. (EAxBB EBxBA]dS
- dwp f(PA Ep - Pp . Ey)av

—_ — —
=-u JBOEA-JAOEB)GV
Vv
Equation 6 will be proved first:

To this end consider the configuration of Pig. 16 agreeing
with Figo 13-

Since the cylinders S, and S, are semi-infinite and the
surface z = 0 1s a perfect conductor, S may be set equal to Sq
or 8, in equation (4). It is therefore sufficient to prove

LT 700

T, N, S 0 S ANRANG Sl ST i AN VLS (- S, R b A ML A3 bl

5 3 SRR
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equation (6) over Sy or S,.
- =G —_— _——»G
If E, = E;” and By = B~ are substituted in equation (7)
with the volume Vl as the enclosed volume and noting that the

volume Vl,' Fig. 16, is sourceless, the following identity is
arrived at. g '

9. B [ 3 GRS W -
PSR - '

R 9 L. -‘_ 5 ¥
gﬁ f ] . (EJG x BmG"')QS2 = econstant in r = K.
So :
This is a constant since ry and r, may be independently
varied while ‘the other is fixed or explicitly -
e i zﬁﬁ L. r . ()

: "~ X Byp'T)ASy o1 5 S
Sl or 82

B TP | i et Dt 2 .=
e Re i (1 T or 2 A'.'IHo (LJ?I or 2)51 U’mr'l or 2)JDJm K

where the constant Dym 1s3

2 | % T3 3, oD
Dim = % / Ajy Aqp expl-z( 7\.J2-52 + Kma-Bz)]dz
g\-d
+ f nzAZJ.Aamcos(z . nzaz-th)cos(z‘/nzsz-hmz)dz}
)

Specifically,'this is true for large Br where the asymptotic

forms of the Hankel functlons are valid:
A
11
: 1lim X = 1/ cos(r(h =A_))

For A; # A\,, this is zero for r = 5({3;7\—“7 ’

where q = integers, but K is a constant; hence the constant
must be zero. Thus equation (6) is verified, since Dy, J # m,

. . i
| A M - i A TG P B BB A s e
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must be zero for K to be zero for all r > o.
Equation (5) will now be proved:

Consider the configuration of Fig. 17. The source p{z')
may be in region 1 or 2 or half-submerged in the conductor at
z = o, i.e., an Abraham dipole. The current I(z") on the semi-
infinite cylinder vV, is such as to excite only the Jth guided mode.

After utilizing the representations of the Hankel functions
for small arguments the following representation for I(z") 1is
arrived at.

_ -zt 1/.& 2-82

5 AlJ e J :
12. I(z")=-1'§57 d<g 2" <o,
g e N 55 6 =z" =< d.

~ A,y ncos(z" ¥/n"p -‘A.Jé-)

This current excites only EJG(rl,z) and ’ﬁ:TG(rrz)o The dipole
excites E(r ,z) and B(r_,z). -

The subscripts for cases A, B, or C agree throughout. It 1s
assumed that I (z") is the total current on F, and p(z') is the
total polarization in Vl.

The application of equation (8) to Vl, Fl;,’ noting that the -
polarization, —15,' is a ccnstant times a delta-function, leads to

el

13, ‘[’ﬁ . (€ x B,° - x BlaF, =
1

-z 1/}_.12_32

T 23 (P1(z Ay e
Wit A.JHO (A.Jx dgz'goo
1 pz(z')AZJcos(z' Vnzsz-sz) 0<Lz'<ad
LPZ(O)AZJ zt= 0
i

The application of equation (8) to V,, F, in the light of
the orthogonality condition, equation 6, gives

P8

£ P 0 VSIS BRI D 2 BN T mw?uumwaawwuamm ditw
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26 _ =6 _ = i}
14. [ no [E XBJ -EJX B]d F2 =
2

(o]

= i fI(z")Ezr(x,z“)dz"

- 2&3 Hol(hjx) n?Ang a + n° 227%s1n(2d 1;252 ~ }ii)
o |

> n232 - ng

AL 2 e” 26“".]'2-32
e ¥ s

5 -
.KJ - B

+

The application of equation (8) to the sourceless region V3,
noting that the integrations over the surfaces at infinity and
at z = 0 vanish, and rearranging the resulting equation leads tos

15. uZ I(zn )Ezrdz"
T = : . . ' 2

T(Agx)
_2615:—J2_32

H,

2 2
2 . A 2,2 A2 A : e

2 1/11-2-8_2?):3 Q/KJZ"BZ
‘- z,"VJ\.J.z - Bz

-rpl(z')AUe d<z'< ™

+ wp.}.J pz(z') A2J cos(z! '&/nZB2 - 7\.32)'

P,(0)A,

- 2(0A s | . gzr=o0
\ : | | | ’ |

R 0 0 Sk, & KIORIBEA Dot oA
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The right side of equation (15) is not a.function x or z.
Hence9 the equation is equal to a constant, G, in x and z.

~ As Bx-becomes large, px >> 13 the quantities on the left
side of equation (15) appreoach zero in the following manner:

s'xéi;“l BL(xzm) ~ ——
X+ <
ox 121 BLOum) ~ 3
L - |
Hence: ' ' 4J~I(zﬁ)Ezrdzu
16. lim & - 1im = 0,
px—-o00 ¥ Bx—» 0. Hy(AsX)

Since G is a constant then G = 0 and both sides of (15) are
identically zero.

It 1is enlightening to observe that the right side of (15)
when(set equal to zero offers an alternate method of determining
the AJ'q. The author has verified the fact that the AJ's are
identical when derived by both methods. This offers a check on
the paths of integration chosen in Fig. 3.

-8ince the denominator of the right side of equation (16)1s
well behaved, x,x>0 the numerator is zero.

“With the substitution of the right side of (12) for I(z")
the mmmerator on the right side of equation 16 becomes:

_17“ : A.2J n2 z Elz'(x,z")cos(z" ¢n23§-).J2)dz“_

0 -z" AU - 32
+ AlJ ‘Jo E;(x,z")e- dz" = 0,
d

The following integral is to be considered'with reference
to Pig. 16.

i i ) A IRAB

VR ST N RN
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: . - 3%
18. %& ./ﬂﬁ . [Ef(r,z,2") x BJG (r,z,z%)Ja 8¢
S or
il
or _ _ ' 2
e 23 { -z th - B
= _ Rem :
S e i L A R EZIL e =
e R or || "0 herorn, -
d .
+ n.2.A2J ‘/7 Ezr cos(z n2ﬂ2 - kJa)dz [
o

r=r)orr, |
In the light of equation (17), equation (18) vanishes.

Consider the sourceless region V, of Fig. 16 with the fields
E and B existing in the region. The application of equation (7)
=r 2 G- = >
to the two components E°, B" and EJ ’ BJ of E and B with the
result of equation (18) yields.

: A G D% — Re s il MR
19—-. ) % fl' o (EJ I’ B )dsl - E fr ° (EJ + B )dSZ

RN

= constant in r
Since ry and TH may be independently wvaried.

The substitution of the explicit expression for Eg, allowing Br
to become very large and examining the result in a manner similar
%6 that used in deducing that the constant in equation (15) was

zero, verifies that equation (19) i1s zero for all r.

A ki

Combining the results of equation equations (18) and (19)
verifies equation (5).

It follows that equation 4 becomes

KA i SR e BRI Dt IV Lo LA AR
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20,

a surface, S,

+Z fﬁ . @% x 8%")as
_ - S

= pr+pf -

This allows the division of the power transferred across

surrounding the source into two or more parts

and hence to separately compute the powers radiated and that
transferred across S by each guided mode.

a)

VII
fhe Power RaQiétgd by the Dipoles

The time-average power output of thé"soﬁrces<may be computed
conveniently by one of two methods:

the integration of the Poynting's vector over a surface

surrounding the source in the far zone: or b)'an integration

at the source.

b) is preferred for simplicity.

N —Let use be made of equation (6. 7)
Pp = P noting as in (6.13) that the polarization, P

Both methods lead to the same results. MNethod

-

2 with Em =E, BB’B and

-y,
o has the

| form of a constant times a delta=function to obtain:

§§~f 3. (Ex'ﬁ)as=-ne-‘§f’5*.zdv

10

P

8

In % .

p(z')* E,(0,z')

n{@* g (0,0)

Hertzian dipole at
rt =0, z' £ 0

hbraham dipole
r'=° z':O

Hoid

a1 SR RO R B Y LIR30 el
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Where S 1s a surface surroundihg the source and V.-1is the
volume enclosed by S.

Ir Ez(O;z') is computed from equations (2.29) to (2.34) by
the application of equations (2.8) and (2.9), and substituted in
equation (1), and use is made of 'Hospital's Rule for evaluating
indeterminate fractions or the well-known expression for the power
radiated by an isolated Hertz dip01e239 24 45 utilized, the ex-
pressions for P result: ' .

. Case Ao
5, P = Ipl(Z')I 933 1 4 ecos[28(z'-d)] _ sip[2g§z'-d)1
(4) ane 3 4p%(z'-a)?’ 8p3(z1-a)3
+ Im 7 I e°2~€(z'-d) an J . » _..
O L5
Case B.

- ‘pz(z')lgwn83

3. 1l , sin2nfz' _ cos2nBz! b
(B) 4ne 3 8531132'3 48 n2Z'2' H
o, 3
- Im L;ﬁﬁg:}-n-g)g-mdcoshzmz' an
' n3cosh md
Case C
2 3 " o ”
T )% P Lis o™
(c) 8me 3 2n°cosh md
where: e x} _g'3 .
§ + pn~2tanh md

R ey et AU o KA SRR At

B3
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If the iIntegrals are closely examined and integrated
wherever possible they are seen to result in:

Case A

5, Im T 1 o-2f(zv-d) g -

(o}

dxi’ﬂl-x?cosmgg z-dﬂl-x J-n" n2 -X tan(Bd --xz)sin 28(z5d)A1-x7]
n 4('1’12-1 )tan (Bd‘vé ) +3 -x°

5= P | é-iﬂ'/4x_§ -2(z'=-d) '1\.2 B

2
Q(K L) Bq n, d)

m £ iT S B : )
& ot fI ‘('Em-l n"2)e ™ ooshPmz'dn
| : n3cosh md -

Z sin§2§z‘§ng-i) é
4Bz'n
1/ 1cos§_2§z':{ -1) sin§2gz'{n‘_-i)
88 z"3ri.

1{ e
: x3dx ;xz -r cos (Bz\/ é-xé 1/ 2-J|:2 tamz(denz-x )-4/£ ]
5 -X

3

4(n -X )tané(d/n ) + 1-x

. ,.____, .
. - k KJ2 1"/40082(2'41"23 L)q( ,B,n,d)
- n533 ; cos (d;nZEZ - R )

A 1 I D UL T N S 2 A T B ity P O

ot .
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- e ln e |
2n3coshmd

° » 4(n B -xz)tan (Bd!\/ E-x ) +1 - x

cosz(d nB Ay )

9

4+
2n3 B

where Q(A ,B,n,d) is defined in section III.

- _ x4 E. n'Q:IL “2,n2 xztanz( x°)- /]:?:I
.y | 2

" (
A,

L N L e
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If method (a), in conjunction with equations (4.20), (4.1)

to (4.10) were used to compute PU, 1t would be found that this
yields exactly the last term in equations (5-7). Hence, the
terms in the summations when substituted in equations (2=4) are
the total powers transferred into the guided modes from the dipoles.
- It is to be noted that it 1s necessary to prove that the power

can be subdivided as in (4.20) before the two divisions can be

compared. i ;

, As was previously observed the total power allotted to a
guided mode (the summations terms in equations (5=7)) is not
acquired by the mode until Br becomes infinite. To a good.
approximation this is true for Br greater than the values of Fig. 5.
"To this approximation, then, equations (2-7) may be given the
‘following interpretation according to equation (4.20). P 1is the
total power transferred across S.

& k . g ‘ |3
# -0 5% ' |
J=1 is equal to the summation

terms in equations (2-7). and is equal to the ‘power transferred
across S by the guided modes, where S has a minimum radius

BR which 1s greater than the values of fr in Pig. 5. PT is equal
to the remaining terms of equations (2-7) and is egual to the power
transferred across S by the compensating waves.

. .

P="pP + p G
;Z y 9
J—.

If equations (2) and (3) are evaluated at z' = d+ and
z' = d-, respectively, it turns out that the powers are identical
if p,(d-) = np,(d+). This verifies the previous result.

Pigures 18 and 19 contain curves of 4geP T as a function
w

P “jwp”
of dipole height, gz', for n® = 2.54, for wwo thicknesses of

dielectric, Bd = 0.15nm and nn/4. The integrals in equations (5-7)
were computed by numerical integration. Comparison curves with

i BRI o

BB 1l 8 oo 0 o000 B R ORI
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Bd = 0 are given.

The discontinuities at Bz = Bd in Figs. 18 and 19 are due to
the abowe-mentioned discontinuities of the magnitudes of the
sources. -The total powers are seen to decrease with Bz' in the

dielectric.. The slight humps 1in .this region are seen to occur
at the maxima in Figs. 20 and -21.

For Bz' > Bd the powers fluctuate
around the values for Bz' = 0,

Both converge upon‘; as Bz' ap-
proaches. large values, indicating that the coupling.to the guided
modes and image fields approaches zero for large Bz'.

Figures 20 and 21 contain curves of'PG /_Pr versus dipole
height, Bz', for the same Bd's and n as Figs. 18 and 19. Figures
20 and 21 are seen to have maxima near the dielectrie and conductor
surfaces and to decrease uniformly with gz' and Bz’ >pd. The
minimum between the two maxima agrees with the minimum in Figs. 18
and 19 for fd = 0. -The two maxima correspond to the two methods
of feeding a balanced two-wire transmission line: (a) a concen-
trated generator in the terminal piece, or (b) two equal concen-

trated generators of opposite polarities in the two wires at the
same cross-section, '

- For the smaller fz', the large magnitudes of the ratios of
Fig. 20 and 21 indicate that an overwhelming portion of the power
radiated by the dipole 1is transferred to the guided or surface

waves. In these cases the nomenclature of compensating wave for
the radiated componept of the field is a preferred one.

VIII
:ge Attequation Constant of a Guided Mode
Pue to_the Finite Conductivity of the Ground Plane

The attenuation constant, a J,',' for Br>>1, of the Jth guided

mode due to a large but finite conductivity of the ground plane
is derived.

. 0
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Use 1s made of the following formulas*

aPG/5r~

qJ=-%—lf—

If the following procedure 1is followed equation (2) will
result for cases A, B, and C.

a)

b)

e)

d)

e)

Assume the fields are those of equations (4.1) - (4.10)

except for a small component Er}ﬂg(r;o)

G

Assume Py is that of equations (7.2) = (7.7).

Set Hy;%(r,0) = = 1 :(r,0) * - Er(r,0)/zg,

Where: 1..(r,0) is a quasi-surface current.

zg = (1-1) ,/_ gk
Compute

. (2
e %-’Re 7 zs|-¢rJ(r,o)| rde

b2
IHQJ(r,o)‘ rde

o
ok_~§¥ o

Substitute e and b in equation 1

2 B0 2 2 .2
_ 252 R PTEPn A ¢ nf? - )

a 3
J : g .
AN 62(n201) + a7 - BPLBPn AP mPYh T - B2)]
J J J .

For cases A, B, and C,

*Lecture notes of R. D. Kodis and E. T. Kornhauser at Harvard

University,
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w . M&ecg - -
Figure 22 contains a plot of n2B 03 as Bd varies, for
= 2.54, and.10m < 'Bd < 1.6n, for the existing modes 1 and 2.
It is to be noted that the attenuation constant for each mode
increases to a maximum and then decreases uniformly with in=-
creasing Bd. These maximum values of attenuation appear approxi-
mately halfway between the cutoff thicknesses. The attenuation

constants for the higher modes are lower than those for the lower

modes since the factor d appears in the denominator of (2) and

the higher modes appear with larger Bd. o

‘The Radiation Resistance —~ ~

The radiation resistance maj be computed by referring it
to the uniform current on the dipole, I(z').

(1) R® = —2F
: : lx(z)1
where I(z') = - 12%%&;1' for both the Abraham and Hertz dipoles
and . h = the half-length of the Hertz dipole = the length of
the Abraham dipole. '
Hence: :
~ e .
(2) R = 4TTEP

2308?02 wpd [p(z") I
This is plotted with P in Figs. 18 and 19.
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Appendix A
To illustrate the type of integration performed to yield
equations (3.5), (3.6), (3.7) and (3.9), consider the integral

in (2.23), after it has been transformed by (3.1}, to be inte-
grated over Wl of Fig. 3.

I = R (F -'e(z*‘z'-cd)

+mn uanhmd

(A-1) CH YOr)nan

"It 1s convenient to make the following substitutions

(A-2)  B"sin@; =z + z' -24; R"cos@, =T  Fig. 2a
Bsina 3 432 - 7».2 = Bcosa

The Riemann sheet of interest in the A-plane of Fig. 3
transforms into the curved strip in the a-=plane, Fig. A-l.
The transformation of the branch cuts (which are not branch cuts
in the a~plans) are defined by sin x cosh y=1. Under the
assumption that BR" cos01'>>1 so that Hol may be replaced by its

asymptotic form for large argument, and substituting (A-2) amd
(A=3) in (A-1), (A-1) becomes:

(a-3) A

. -1rr/4 2 / e BR“\cosasinol-fsingcosOl)

nR" os
(A-4) s 01[ 1Bcosa+fn “2/n%-s 1n2; tan(gayn? ~s1n% )]

This 1s of the proper form for an integration by the method
of steepest descents, 10, 12 when R"> > 4.

The saddle-point is ata = n/2-8@.

The path of steepest deseent, W, 18 defined by
sin(x + Gl)cosh y=1 (Fig A-l).

If the assumption 1is made that the poles are not near enough

to the @ = n/2 to affect the integrand before the exponential

tNe

12w

A M D e LI Sadly V) SR B

L A £ A A P b A S O6 B S MY o S i 6 DR



TR172 -

factor has attenuated it to negligible valué*912 then the
integration over W results in:

Casy - dB0 1BR"  sine,
e T T 4np" : -
1Bsine, + an~2 NE?-coszeltan(ad n2-008291)

‘and it may be observed that:

(A-6) I =~F}ﬂ. 6 da = r e o 4@ + 2ni E Residues enclosed by
. LLY W ‘W and W,.

- When W passes through a pole, one-half the residue is .
1nc1uded10 12 ‘as a contribution to the integration. If the pole
is included between W and W,, the whole residue is contributed
to (A-6), while if the pole is excluded by path W=, " there is
no contribution from it, :

It is relatively easy to verify that W passes through a
pole when 91 = cos'la/lw; and from this relationship the
ccefficients AJ(OI) qf the residue waves arise. The‘residue terms
are evaluated by well-known methods.

The rapid decrease of the coefficient AJ(OI) at its critical
value is due to the fact that for large BR the path passes very
rapidly through the pole as inaries.

The results obtained thus far have been restricted to BR"
cosei>:>1 by virtue of the assumption that the Hankel function
could be replaced by its asymptotic form. Actually, the re-
striction is less strict for a good approximation and it may be
modified to BR">>1 and (BR"cos®,)°>>1. This leaves only a
small region near 91 = nn/2 where the results developed are not
valid. The restrictions may be further modified by the following:

*See Appendix B for the exact condition.
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Consider (2.29) for r = o, 8 = rr/2 BR" = Bz >>1.

-‘ﬁ( z+z ' -2d )
(A=-7) I f A
r=0

3 + mn 2tanh md

_ Performing the same transformations, (A=2) and (A-3), and
integrating over half the path W (the part on and below the
x-axis of Fig. A-1) in the a-plane, the following is obtalned:

-1 e ig(z+z'=24)
r=o (z+z '-24)( i+n tanﬁnd)

where there are no residue terms since Bz >>1 and 9 n/2 >
cos ™ B/A;{4;€0) = 0). ~

It is seen that I

1lim 1\
r=o0 6= /2 eq. A-6

It is therefore a reasonable assumption that- equation (A-6)

is valid for all 91, 0<01 =n/2, BR"7>1.

The integrations of equations (2-30), (2.31) and (2. 33) are

performed in a similar manner.
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Appendix B
As an illustrative examble of the applicdtion of the method
of B. L. Van Der Waerden13 to the integration of equations (2.32)

and (2.34), consider the following integral, obtained by applyiing
(3.1) to (2.32). - -

1 °°'(4-mn'2)coshmz'coshmz o 14y H% (Ar)d\
.
@

(B-1) I = === : —
4 | m($ coshmd + mn 2 ginh md)
'é '

Since the integrand of (B-1) has two extra branch cuts,
(3) and (4) in Fig. 3, at A= + n3, and one of these intersects
the path of steepest desecent for the integrand in (B-1) if the.
method of steepest descents, Appendix A, is used, the integration
by the method of steepest desents is compiicated. The Van Der -
Waerden method contains a systematic procedure for integrating
‘around branch cuts. '

In order to put (B-1) in Van der Waerden's form the following
transformation is performed.

(B-2) P A=y

1 Substitute the asymptotiec representation for large Ar for
(Ar).

The transformed y = - iA - plane is shown in Fig. B-1 where
(1), (2), (3), (4), and (5) are the branch cuts that appear in
the A - plane, Pig. 3.

Thens

(B-3) ' L= f W e "Mav  .for Br >> B4,
b

Where r corresponds to Van Der Waerden's A,

In the p-plane the saddle-point of the pu~-piane becomes
another branch point.}3 1In this case thers is no added complication

— e - g
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because this added branch point is coincident with the one at
u =-iB. .

For large r and for a contour shifted far to the right in
Fig; B-l; the integral reduces to integrations over the branch
cuts and poles. The former yield rapidly converging series for
large Ar and for poles not to close to the branch points.

Performing the integrations exactly as Van Der Waerden~does;
the following is obtained: ‘

k ,
(B-4) I=2n E Residue - 5%;,9 ingr, O(r'z);
R . L

where O(r~2) indicates a term of order r 2 and yields an estimate
of the error.

The residue are computed in the usual way and are modified
-by: equation (3. 2) to yield the summation terms of (3. 8).

Bz
and (< Bd <<Br,
Bz
then BR' = BR' * Br and equation (3.8) is obtained. |
I@_has been assumed that the poles are not too near to the

branch points. An estimate of not too near is a result of the
Van Der Waerden method. It is:

-r B- .
(B=5) a) e | Ml

and <<0(r 2)<o(r™t)
b) e-‘r[nB-l'kl

If the integrations in Appendix A had been performed by the
method in Appendix B, the definition of the pole being not too

near the branch point would be found to be (B=5a). Hence'equation

(B=5a) and (B=5b) are necessary restrictions for all the equations
(3 05) s (3010).
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